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Let G be a molecular graph and e=uv  be an edge of  G. Define )|( Geneu
 to the number of edges of lying closer to u than 

to v  and )|( Genev
 to the number of edges of lying closer to v  than to  u. Then the edge Szeged index of G, )(GSze

, is 

defined as the sum of )|( Geneu )|( Genev
over all edges of G. In this paper we find the above index for )(84 SCTUC  

nanotori graph using the group of automorphisms of G. This is an efficient method of finding this index especially when the 
automorphism group of G  has a few orbits on E(G). 
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1. Introduction 
 
A graph G consists of a set of vertices V(G)  and a set 

of edges E(G).  The vertices in G are connected by an edge 

if there exists an edge )(GEuv  connecting the vertices 

u and v in G such that )(, GVvu  . In chemical graphs, 

the vertices of the graph correspond to the atoms of the 

molecule, and the edges represent the chemical bonds. The 

number of vertices and edges in a graph will be denoted by 

| V(G)|  and | E(G)|, respectively. 

Topological indices are graph invariants and are used 

for Quantitative Structure-Activity Relationship (QSAR) 

and Quantitative Structure-Property Relationship (QSPR) 

studies [9,11]. Many topological indices have been defined 

and several of them have found applications as means to 

model physical, chemical, pharmaceutical and other 

properties of molecules [13]. The oldest topological index 

is the Wiener index which was introduced by Harold 

wiener [15]. Here, we consider a new topological index, 

named edge Szeged index, see [14]. 

To define the edge Szeged index of a connected graph 

G, we correspond to  an edge e=uv of E(G), two quantities 

)|( Geneu  and )|( Genev  in which )|( Geneu  is the 

number of edges lying closer to the vertex u than the 

vertex v, and )|( Genev  is the number of edges lying 

closer to the vertex v than the vertex u. Then the edge 

Szeged index of the graph G is defined as  
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Let  e=uv be an edge of G.  We define the following 

sets: 

)},(),(|)({)|( wvdwudGVwGeNu  ,

)},(),(|)({)|( wudwvdGVwGeNv  , 

)},(),(|)({)|(0 wudwvdGVwGeN  . If the size of 

)|(0 GeN  is zero, then )|( Geneu   (resp. )|( Genev ) is 

the number of edges of  in graph introduce by )|( GeNu   

(resp. )|( GeNv ). 

We using the above notation that compute the edge Szeged 

index.  

By an automorphism of the graph G =(V,E) we mean 

a bijection σ on V which preserves the edge set E, i.e., if 

e=uv is an edge, then 
 vue  is an edge of E. Here 

u  denotes the image of the vertex u under σ . It is 

obvious that the set of all the automorphisms of G under 

the composition of mappings forms a group which is 

denoted by )(GAut . We say that Г acts transitively 

on E(G) if for any edges e  and f  in E there is   such 

that fe 
.   

The following result enables us to calculate )(GSze  

easily. 

  

Lemma 1.  Let G = (V , E) be a simple connected 

graph. If Aut(G) on E has orbits rEEE ,,, 21   with 

representatives reee ,,, 21  , respectively, where 

iii vue  ,  then 
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Proof. Since each orbit iE  acting transitively on iE , 

so )|( Gen iue ii
 and )|( Gen ive ii

 are constant for all 
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edges iii vue   in orbit iE . Now by definition edge 

Szeged index we have 
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The proof is completed.  

 

Some topological indices are computed for some 

nanotubes and nanotori, for example see [1,2,4,5,6,12,16]. 

In this paper we compute the edge Szeged index of 

)(84 SCTUC  nanotori, using the group of automorphisms 

of G. 

 

 

2. Main results and discussion 
 

We assume that ],)[(84 nmSCTUCT   is the 

molecular graph of a )(84 SCTUC  nanotorus with  m and 

n oblique edges in each row and column (Fig. 1). This 

graph has 2n rows with m vertices in each row and 2m 

columns with n vertices in each column. Hence graph T 

has exactly 2mn vertices and 3mn edges. 

The following lemma is basic. 

Lemma  2 ([3]). The automorphism group T on the 

set of edges has exactly three orbits determined by a 

vertical edge, a horizontal edge and an oblique edge of T. 

 

 

 

Fig. 1. The 2-Dimensional Lattice of 

]3,3)[(84 SCTUCT  Nanotorus 

Now we ready to compute the edge Szeged index of  

)(84 SCTUC .   

Theorem 1. The edge Szeged of nanotori 
 

],)[(84 nmSCTUCT   is 
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Proof. Let the orbits of Aut(T) on the set of  edges of T  be 

denoted by 1E  (horizontal edges),  2E  (vertical edges) 

and 3E  (oblique edges), according Lemma 2 (Fig. 2).  So 

by Lemma 1, we have  
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Consider the edge e=uv  in the orbit iE for 3,2,1i . 

Now we count  )|( Teneu  which is the number of edges 

 of  the  set )|( TeNu .  

Case 1. Suppose e=uv be the horizontal edge in orbit 

1E . Let us choose muu 2  and )1(2  muv  as 

vertices of the edge e=uv (Fig. 3). The set  )|( TeNu  

consist vertices of columns mCCC ,,, 21  . Since each 

column has n vertices, so the size of )|( TeNu  is mn. It is 

easy to check that the vertices of columns 1C  and mC  

have degree 2 and other vertices are from degree 3. 

Therefore )23(
2

1
)|( nmnTeneu  . In a similar 

manner  we obtain )23(
2

1
)|( nmnTenev  . 

Case 2. Let  e=uv be the vertical edge in orbit 2E . 

Suppose ],[ nmTT   is a rotation of T through 
2


, 

where nm   and mn  . Apply case 1, we have 

)23(
2

1
)|()|( mmnTenTen eveu  .   
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Fig. 2. The vertices, rows and columns.  

 

 

Case 3. Let e=uv be the oblique edge in orbit 3E . Let 

us choose 21uu   and 12uv   as vertices of the edge 

e=uv, (Fig. 2). We first assume mn  . The set )|( TeNu  

consist vertices of rows 154 ,,, nRRR   and the half 

vertices of rows nRRRR ,,, 321 . Since each row has m 

vertices. Hence 

mnnmTeN m
u  )(4)2(|)|(|

2
. The number 

of vertices of the set )|( TeNu  that its degree is 2 equal 

to 3m-2 and other vertices have degree 3. Therefore 

)233(
2

1
)|(  nmnTeneu . Since T is symmetric, so 

)233(
2

1
)|(  nmnTenev . 

Now if n<m, then in a similar manner we obtain 

)233(
2

1
)|()|(  mmnTenTen eveu . 

Since mnEi ||  for 3,2,1i , so with an easy 

calculations the proof complete. 
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